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Abstract. An ideal superparaelectric is treated as an ensemble of independent coherenlly 
polarizing regions. of linear dimension A, each of which behaves as a ’Devonshire fenoelenric’. 
with UansiIion temperature TO, and local polarizatioh P, - (T - For sufficiently small 
1, the direction of the local polarization vecmr can fluctuate with thermal energies. giving rise La 
a static pe-llivity, cs, which follows a modified Curie law: cp - (T - To)A3 f 7. In addition, 
the peak in permittivity at TO is suppressed due to spatially uniform thermal fluctuations in 
the magnitude of the local polarization. The activation energy for the directiond Ructualions 
increases with decreasing temperature: E. - (T - T0)lA3, giving rise to Debye-type relaxation 
and peaks in the real and imaginary perminivity around Tm, where To - T, increases with 
decreasing A. FM a fictitious s u p e m l e c t r i c .  based on PMZro,7Tio3)03, the effect% described 
above become important for A < 15 nm. Relaxor-like hequency dependence of the imaginary 
part of the permittivity, f“, is only observed when distributions of A, width AA, are introduced. 
The best qualitative match to typical relaxor behaviour is seen when both A and A1 diverge 
at some non-zero temperature. The introduction of dipolar coupling. in the form of a mean 
field, produces a transition to a macroscopic ferrcelecpic state in the sialic propenies, at a 
lemperature which increases with increasing coupling strength. For sufficiently svong coupling. 
a spontaneous vansition may be apparent in observable time scales: otherwise the system remains 
glassy. 

1. Introduction 

The class of dielectrics known as ‘relaxors’ [ I ]  are of significant technological and 
scientific interest. The class comprises a large number of complex perovskites of 
the types A(B:B;,)03, (e.g. Pb(Mg1/3NbZ/3)03 (PMN), Pb(Sc1/2W/dO3 and 
Pb(Sc1/2Nb1/2)03 (PSN)), some perovskite solid solutions (e.g. ~b~_,,/zLa,)(Zrl-,Ti,)O, 
( P m )  and (Pbl-lBax)(Zr,-yTiy)q (PBn)) and a number of tungsten bronze structure 
oxides (e.g. Sr~-~Ba,Nblo030 (sBN)). They are characterized by a broad peak in the real 
part of the dielectric permittivity as a function of temperature, with the peak decreasing 
in magnitude and shifting to higher temperature with increasing measurement frequency in 
the RF range (figure I@)). At temperatures below that of the peak permittivity, the real 
part decreases in magnitude with increasing frequency. The imaginary part of the dielectric 
permittivity exhibits frequency dependence at temperatures above its peak value, with the 
peak value increasing with increasing frequency (figure l(b)). 

In PMN the temperature of the maximum permittivity is around 270 K. At temperatures 
above 600 K, the real part of permittivity follows Curie-Weiss behaviour [2], with a Curie 
temperature of 398 K. This is consistent with the observations of Bums [3], who showed 
that local polarization fluctuations exirt up to 600 K. 
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Figure 1. ( a )  Real and (b) imaginary p a  of permittivily of PMN, PST, F5N and PBZT as a 
function of temperature. 

Relaxor behaviour is associated with a gradual transition from macroscopic paraelectric 
to a ferroelectric phase at a temperature below that of the peak in permittivity. In PMN and 
PUT the ferroelectric phase is induced by the application of an electric field, the transition 
temperature being dependent upon the applied field strength [4]. In PMN zero-field depoling 
occurs on heating at 213 K. In contrast, in PST and PSN, spontaneous, zero-field transitions to 
a ferroelectric state, the appearance of which has been shown to be critically dependent upon 
the Pb-vacancy concentration, accw at 263 K and 368 K respectively, with the dielectric 
maxima at approximately 28K and 383 K respectively [5]. 

It has been recognized since the earliest investigations of relaxor behaviour [6] that 
crystalline disorder plays an important role in the phenomenon. Setter and Cross 171 showed 
that PST with high degrees of B-site ordering is ferroelectric, whilst that with disorder on 
the B site is a relaxor. Transmission electron microscopy of PMN [8,9] has revealed a 
partitioning of the structure into ordered and disordered regions at the nanometre scale. 
Whilst x-ray and neutron diffraction studies [IO] have shown that high-temperature PMN 
is macroscopically cubic, but with significant atomic shifts around the ideal perovskite 
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structure. On cooling, correlated polar clusters with (1 1 I )  distortions develop leading to the 
formation, at low temperature, of polar nanodomains with an estimated diameter of 10 nm 
at 5 K. 

It has been suggested that the dielectric anomaly and frequency dispersion are due to 
the slowing down of superparaelectric moments [l]. An ideal superparaelectric might be 
considered to be an ensemble of small polar regions, the sizes of which are characterized 
by the spatial coherence of their spontaneous polarization. (There is a multiplicity of terms 
in the relaxor literature for such basic entities. They have been referred to in various 
experimental and theoretical contexts as micro-domains, nano-domains, clusters and W z i g  
regions. In the present work, the term cluster will be used to represent a small coherently 
polarizing volume. This does not necessarily imply correspondence with the term as used 
in the orientational glass literature [ll],  for example.) Where the size of the clusters is 
sufficiently small, such that the energy required to reorient the polarization is of the order 
of the thermal energy of the crystal, the direction of the polarization of each cluster can 
fluctuate. On reducing the temperature of the crystal, the frequency of the fluctuations will 
decrease. Such a situation would be expected to give rise to a classical Debye-like relaxation 
in the dielectric properties, with a temperature-dependent relation frequency. The observed 
transition in PST might correspond to a spontaneous alignment of superparaelectric clusters 
to form a macroscopic ferroelectric state. On the other hand the moments in PMN appear to 
slow down into a glassy state. 

Previous analysis of the dielectric behaviour suggests that the slowing down of the 
clusters is more rapid than simple Debye behaviour would predict [IZ]. Subsequently, the 
frequency dispersion of PMN has been analysed according to Vogel-Fulcher relationship: 

in which T, is the temperature of the peak in permittivity for measurement frequency 
fv; f i  is known as the freezing temperature. Values of E,  equivalent to 464 K and fV 
= IO” Hz were obtained [13]. Tt was found to be 218 K, almost coincident with the 
zero-field depoling temperature. It has been argued that similar behaviour in P U T ,  and by 
implication in PMN, is indicative of freezing of the superparaelectric moments into a dipolar 
glassy state due to correlations between moments [4]. Essentially this is in agreement 
with the recent conclusions from acoustic data [14], that the low-temperature state of P h i  
corresponds to a dipolar glass state with ferroelectric order. Other possibilities discussed 
in the literature include a dipolar glass without ferroelectric order [141 and ferroelectric 
nano-domains stabilized by random fields due to compositional fluctuations [IS]. 

Much emphasis has been placed upon the broadening of the relaxation time spectrum 
of relaxors with decreasing temperature, as inferred from measurements of the dielechic 
function 114,161. Recently Tagantsev [ 171 has shown that the Vogel-Fulcher relationship 
can be a direct consequence of a gradual broadening of a relaxation time spectrum and that 
the relatlonship is not necessarily indicative of a system in which the specmm becomes 
infinitely broad at fi, but implies only gradual broadening. The majority of measurements 
of relaxors cover a comparatively small range of frequencies, typically 10 Hz to 1 MHz. 
Over such a range, a broad, but not necessarily infinitely broad, spectrum of relaxation times 
would appear to exhibit frequency independence in the imaginary part of permittivity. Only 
by looking over a wider range of frequencies may some frequency dependence be detected. 
Recently, Colla et al [IS], from measurements of PMN down to Hz, inferred a broad, 
but finite, frequency spectrum, of which the mean was approximately linearly temperature 
dependent down to 230 K, but then appeared constant Hz) at lower temperatures. 
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It is the purpose of the present work to provide a foundation upon which numerical 
calculations of the dielectric behaviour of an ensemble of superparaelectric clusters may be 
carried out and with which different models of cluster dynamics may be examined. A basic 
assumption of the calculations is that initially the clusters may be treated as independent, 
classical ferroelecuics. The main justification for this assumption is that at high-temperature 
Curie-Weiss behaviour is apparent. The approach taken is phenomenological rather 
than microscopic and employs the Landau-Ginzberg-Devonshire (LGD) formalism for 
ferroelectrics to calculate the dielectric function of an ensemble of clusters. Although the 
LGD theory is often regarded as inaccurate far from the Curie temperature, its application 
to the PZT system 119-231 over a wide temperature range has been shown to be successful. 
For the illustrative calculations here, it provides a convenient approximation for the 
basis of the model. The Debye model of dielectric relaxation is assumed to apply 
to the ensemble. As examples of how the dielectric behaviour of different scenarios 
may be compared, calculations are performed for a number of fictional superparaelectncs 
based upon Pb(Zro.~Tio.,)O~: initially, an ensemble of independent, identical, mono-sized 
superparaelectric clusters, and subsequently, (i) a distribution in the size of the clusters, (ii) 
temperature-dependent cluster sizes, and (iii) dipolar cluster interactions. 

2. Theoretical analysis 

2.1. Debye relaxation of an ideal superparaelectric 

For the purpose of these calculations, an ideal superparaelectric is defined as an ensemble of 
non-interacting polar regions, in which each region, or cluster, behaves as an independent, 
conventional ferroelectric. The size of the polar regions is such that the direction of 
polarization may be reoriented by thermal fluctuations of the lattice. This is perhaps 
consistent with the concept of a ferroelectric crystal which includes features, such as 
crystalline disorder, which limit the coherence of the spontaneous polarization. The density 
of these features determines the size of a coherently polarizing volume, A. In the simplest 
case, each initially isotropic region is subject to distortion, on cooling through temperature 
TO, to a ferroelectric structure characterized by a local, temperature-dependent polarization, 
P,. The reorientation of the polarization vector of a single region, between the variants 
allowed by the crystal symmetry, is considered to be a thermally activated process with 
activation energy E,. In terms of an energy density, C,, the activation energy is dependent 
on the region size ( E ,  = C,A3) and is assumed to be a function of the local polarization Ps. 
For E ,  of the order of kT. the polarization vector fluctuates in direction with frequency, fi, 
given by: 

f r  = fWP(+)  C,A3 

in which fo is a frequency of the order of the crystal phonon frequencies. In the case of a 
second order ferroelectric phase transition, the value of Ps is proportional to (G -T)’ l z ;  C, 
therefore increases and fr decreases with decreasing temperature below TO. A temperature- 
dependent dielectric relaxation is therefore observed at frequencies below fo, with the 
dielectric function being given by the Debye equations: 
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in which 6% is the static permittivity and E ,  the permittivity for f >> f,. Both the static and 
high-frequency permittivities might be expected to be temperature dependent cw represents 
changes in the magnitude of the polarization vector under applied fields at frequencies higher 
than the relaxation frequency and includes both ionic and electronic contributions; it is that 
permittivity which would be exhibited by a corresponding ‘macroscopic’ ferroelectric at 
frequencies < fo, i.e. not the optical permittivity. The static permittivity, cs represents the 
change in polarization due to reorientation of the polarization vector under static applied 
fields. 

For the purpose of illustration the example followed here considers the case of a 
superparaelectric perovskite with low-temperature rhombohedral symmetry. To simplify 
the analysis, the ferroelectric transition will be assumed to be second order. 

2.2. Static permittivity 

A rhombohedral ferroelectric of the perovskite sttucture possesses eight possible equivalent 
directions for the polarization vector. On the application of a field, E ,  parallel to one of these 
directions the energy of each of the directions is modified by the appropriate component of 
-E P,h3. That is, the energy state of regions with polarization parallel to the direction of 
the applied field will be modified by -EP,k3 ,  the anti-parallel direction by EP,h3, three 
directions by EP,cos(a)h3 and three directions by -EP,cos(a)h’, where a is the angle 
between the (1 1 I )  directions. The total static polarization parallel to the applied field, due 
to cluster reorientation, is therefore given by: 

PI = P,[exp(EP,h3/kT) - exp(-EP,h3/kT) + 3cos(a) exp(EP,cos(a)h3/kT) 

- 3cos(a) exp( -~~ ,cos (a )k ’ /k~) ]  

x [exp(EP,h3/kT) 

+ exp( - E P s A 3 / k T )  + 3 exp( E P, cos(ru)h3/kT) 

+ 3exp(-EP,cos(a)h3/kT)]-’ .  

When the rhombohedral distortion is small compared to the cubic prototype, 

cos@) % 1/3 

and 

Pr = P,tanh - 

(3) 

(4) 

The static permittivity is given by differentiating PI with respect to the field, which for 
the limit E -+ 0, reduces to the Curie law. Including contributions from the change in 
magnitude of the polarization vector, that is the high-frequency permittivity, cw, the static 
permittivity, for T < TO, is given as: 

P,2P 
Es = - 

3kT 
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2.3. Local polarization 

The polarization, high-frequency permittivity and anisotropy energy density may all be 
found in terms of the LGD theory of ferroelectrics [24]. The elastic Gibbs free energy of 
a ferroelectric, with reference to the unpolarized state, is expressed in terms of a Taylor 
series expansion in polarization. For simplicity, the series is terminated here in terms of 
P4. which is sufficient for second-order transitions, but not necessarily accurate. 

GI - Gto = al(P: + P2” + P:) +at,(P; + P2” + P;) 
+an(P;P:+ Pz”P,z+ P p : )  

where Pi=1,2,3 are the components of polarization parallel to the pseudo-cubic axes and 011 

is temperature dependent: 

For rhombohedral symmetry 

Therefore the expression reduces to 

The stable siates are found by solving 

to give the well known result for the temperature dependence of the polarization: 

with 

For macroscopic crystals, the stable state polarization is taken to be that corresponding 
to the minimum in AGl. However, for an ensemble of clusters, if the size is such that 
AGlh3 is of the order of kT,  a distribution of states about the minimum energy should be 
considered. This would imply a corresponding distribution in the magnitude of polarization 
and permittivity, E ~ .  The distribution is most significant when the potential well is shallow, 
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that is, close to TO. Such a situation has been considered recently for the dielectric properties 
of ‘sub-pins’ in BaTiO3 ceramics [25]. For complete rigour the mean local polarization 
should be calculated by integrating over the three components of polarization P;=r.z.3, 
however the result is similar if it is assumed, for the sake of computational brevity, that only 
distributions of the local polarization parallel to the applied field are significant Hence, 
averaging of the polarization is accomplished by integrating over possible values in the 
(1 11) direction only: 

where G I ( f , )  is given by equation (6) with P,‘ = 3P: (PI = Pz = P3), ind Clo = 0. For 
T To, the free energy surface is isotropic, thus the (1 11) direction is representative of the 
isotropic polarization fluctuations. In this region, equation (10) has an analytical solution 
of the form: 

where 

r = ~ c & ~ I [ ~ ( c x ~ ~  + 

and where Ux,y(  ) is the confluent hypergeometric function and K,( ) the modified Bessel 
function. However, this solution is only valid for z 0; numerical solutions must be 
sought for T c TO. 

2.4. High-frequency permittiviry 

Following normal practice for macroscopic ferroelectrics, the value of E- is found from the 
second differential of the free energy with respect to polarization. In terms of the dielectric 
stiffness 

the stifmess perpendicular and parallel to the polar axis are then given by: 

and 
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For T > To 

1111 = q?.?. = 1133 = 24x1. (13) 

Using these relations. the stiffness, and hence the high-frequency permittivity of an ensemble 
of randomly oriented clusters, parallel to a (111) axis of the crystal can be estimated. 
However, as with the calculation of polarization, it is necessary to take into account the 
effect of thermal fluctuations on the magnitude of polarization, necessitating an averaging 
of the stiffness over probable values: 

No analytical solution has been found for T < TO necessitating numerical integration, but 
for T > To: 

2.5. Anisotropy energy densiiy 

G ,  can be calculated from the free energy expansion as being the lowest-energy path for 
reorientation of the polarization between two (111) directions. Figure 2 shows the free 
energy surface for T < TO calculated for Pb(Zr0.7Ti0.3)03 from the free energy coefficients 
given by Haun [19-231. The x axis represents the value of PI whereas the y axis shows 
the value of Pz. The value of P3 is constrained to be equal to Pz such that the minima 
corresponding to the four stable symmetries of the system (cubic, tetragonal, rhombohedral 
and orthorhombic) can be shown on one diagram. The absolute minima in free energy 
of the system can be seen to lie on the lines PI = P, (= P3), whereas secondary 
minima exist for values of PI  = 0 (orthorhombic) and P2 (= 4) = 0 (tetragonal). These 
correspond to the (1 11). (01 1) and (001) directions of the polarization vector respectively. 
The activation energy for orientation from one rhombohedral orientation to another is the 
difference between the energy of the rhombohedral state and that corresponding to the 
orthorhombic orientation of polarization ((011) direction). From (6) and (9) above, the 
energy of the rhombohedral and oithorhombic states are given by: 

and 
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and G, = GO - G,: 

Thus, the activation energy for reorientation of the polarization is proportional to (T - TO)*. 
and hence, the Debye relaxation frequency does not follow true Arrhenius-type behaviour. 
Fluctuations in the magnitude of polarization might be expected to produce a distribution 
of activation energies. Whilst, for certain temperature ranges, this distribution is assumed 
to have some importance, its effect is likely to be similar to that of having a distribution 
of cluster sizes, (a w e  which is examined in some detail below), therefore in the simple 
case examined initially, the effects on G, of fluctuations in the magnitude of polarization 
are omitted. 

Figure 2. Free energy surface of a femlectric pmvski le  With rhombohedral symmehy for 
T c To. Calculated for Pb(Zro.,TEg.i)03. 

3. Results 

3.1. independent mono-sized clusters 

All the terms in the Debye equations (2) are functions of the six variables: a;, 0111. ~ ~ 1 2 ,  TO, h. 
and fo. For an increasing number of macroscopic ferroelectrics, the free energy coefficients 
are known, hence it is possible to calculate a fictional superparaelectric dielectric funGIion 
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for such materials with only the region size A, and the relaxation frequency pre-exponent, 
fo. as parameters. 

As an example, calculations are made here for Pb(Zro,,Tio.3)03 (PZT 70/30), which is a 
perovskite with a second order transition from a paraelectric to a rhombohedral ferroelectric 
phase at 605 K. Although at present there is little evidence to suggest that PZT 70/30 is 
itself a relaxor, it is close to two known relaxor systems: (pbl-,La,)(Zrl-,Ti,)O~ and 
(Pbl-,Ba,)(Zr~_,Ti,)O~. In the following simulations, terms in the free energy higher than 
P4 are ignored, as are terms due to octahedral tilts or possible antiferroelectric ordering. 
The values of the free energy coefficients are those given by Haun [Zl]. The parameter fo 
is taken to be 10" Hz, unless stated otherwise. 

0.8 , , , , , , , , , , , ~, I ,  

0.6 t \  

0.21 
J 

Temperature (K) 
Figure 3. Mean local polarization of an ideal superparaelec~c as a function of temperature for 
values of A = 3 nm to m. 

Figure 3 shows the mean local polarization, Fs, as a function of temperature, including 
the effects of fluctuations in the magnitude of polarization (equation (lo)), with the cluster 
size as a parameter. Below To, there are minor deviations from macroscopic behaviour for 
the smallest cluster sizes, however, the calculation shows that the mean local polarization is 
always non-zero for T > TO. For the larger cluster sizes, ps approaches zero asymptotically 
within 50 K above To, however, for smaller clusters the materials exhibit significant values 
of mean polarization towards the decomposition temperature of the material. 

The corresponding mean high-frequency permittivity (= (qo)-') is shown in figure 4 
as a function of temperature. The height of the peak in permittivity at TO decreases with 
decreasing cluster size and becomes rather insignificant for cluster diameters of < 10 nm. 
For temperatures (TO - 100) > T > (TO t ZOO) the mean permittivity approximates to that 
for macroscopic sizes. The upper limit of this range is similar to that seen for PMN in its 
departure from Curie-Weiss behaviour 121, ( T B ~ ~  

The static permittivity, E,, is shown in figure 5 with the region size, A, as a parameter. 
The corresponding real and imaginary parts of the relative permittivity at 1 kHz are shown 
in figure 6. The frequency dependence of the complex permittivity is shown for A = 3 nm 
in figure 7. 

TO + 200). 
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Fwre 4. Mean high-frequency permiltivity of an ideal superparaelectric as a function of 
temperature for values of h = 3 nm lo m. Results for the full temperature range are shown 
inset. 

It is clear that the exp((T - T0)'A3/T) dependence of the relaxation frequency is 
responsible for the marked peak and dispersion in the permittivities, the temperature of 
peak permittivity decreasing with decreasing cluster size. The peaks shown in figures 6 and 
7 are due purely to the slowing down of the superparaelectric moments, with only a minor 
contribution from the paraelectric-superparaelectnc transition at 605 K. 
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Temperature (K) 
Flgure 6. (a)  Real and (b) imaginary par& of permittivity at I kHz as a function of temperature 
for values of A = 3 nm to 15 nm. 

3.2. Cluster size distributions 

It is clear from the large values of permittivity predicted by the above model for large 
clusters and from the breadth of the permittivity peaks for the smaller clusters, that this 
calculated behaviour differs makedly from that exhibited by known relaxors. Moreover, 
the calculated imaginary part of the permittivity is contrary to that found experimentally; 
that is, the maximum E" increases as a function of frequency, with no tendency towards 
frequency independence at lower temperatures. These disparities can perhaps be attributed 
to the use of unique values of To and h in the calculations, both of which may be expected 
to be represented by a distribution of values in real systems. In the present model, due to 
the exp((T - To)'h3/T) dependence of the relaxation frequency, any distribution in or A, 
as might be expected in a disordered crystal, would result in a broadening in the relaxation 
time spectrum with decreasing temperature. Hence, it is relevant to look at least one of 
these cases in more detail. 

It is not obvious how a distribution of contributions to the complex permittivity may be 
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0 200 400 600 800 

Temperature (K) 
Figure 7. (a) Real and ( b )  imaginary parts Of perminiviry as a function of 
frequency for 1 = 3 nm. 

temperature and 

summed. Here the approach has been to sum the real and imaginary parts separately. As 
in any mixture of dielectrics, the problem may be approached from the point of summing 
the permittivity or the stiffness; in equation (14) the latter was used. Experience has shown 
that these two approaches represent limiting cases only, whilst various empirical approaches 
have been proposed which provide better fits to experiment [26]. Somewhat arbitrarily, the 
form chosen here is a summation over stiffness for the real part of permittivity, whilst a 
summation of permittivities is used for the imaginary part. In general, the temperature 
and frequency dependences of the mean real permittivity, resulting from the two types 
of summation, is similar, but with a difference of approximately a factor of four in the 
peak value, the summation over stiffnesses provides the lower value. Here, log Gaussian 
distributions of A were incorporated into the calculations as follows: 
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To avoid prohibitively lengthy computations due to multiple integrals, approximations were 
made, such that &T, A) = E,(T, i) and P,(T, h) = P,(T, 1) leaving E ,  and fr as the 
A-dependent variables. 

Temperature (K) 
Figure 8, (0)  Real and ( b )  imaginary pm of permittivity as n function of temperauue and 
frequency for log Gaussian diseibutiom of A with (AlogA)2 = 0.2.0.35 and 1.0. 
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Figure 8 shows the real and imaginary parts of permittivity for i, = 3 nm and distribution 
widths given by (A log A)' = 0.2,0.35 and 1. The lower limit of integration A- was chosen as 
0.4 nm, the approximate dimension of the unit cell, whereas the upper limit, A,, was chosen 
as 100 nm. The imaginary part of permittivity shows evidence of the broadening of the 
relaxation time spectrum with decreasing temperature and increasing A log A. However, with 
the parameters used here, the peak in E" for the largest value of A IogA becomes extremely 
broad in the temperature domain when compared to experimental data (figure I(b) for 
example). This perhaps suggests that the broadening of the relaxation frequency spectrum 
is stronger than that given by a temperature-independent distribution of cluster sizes, and 
that the cluster size distribution itself is temperature dependent. 

3.3. Temperature-dependent cluster size 

The suggestion that an increase in the size of the clusters takes place with decreasing 
temperature is supported not only from relaxation time data [ 14,161, but also from estimates 
of the correlation &us of ferroelectric fluctuations estimated from neutron scattering data 
[27]. Examples have been calculated here by incorporating a simple size dependence into 
the above calculations (equation 20)), initially with X(T) = Ao/T. For a log Gaussian 
distribution, the effect of increasing ,i would bring about a corresponding increase in the 
linear width of the distribution, thus also fulfilling the requirement, suggested above, of a 
temperature-dependent distribution. An increase in cluster size with decreasing temp- mrature 
gives narrower relaxation peaks at higher temperatures compared to the temperature- 
independent distributions. However, the requirement for maintaining a narrow peak in the 
temperature domain with a broad frequency spectrum suggests an even stronger temperature 
dependence of the size distribution. A number of simulations have been made which suggest 
that a divergence of both the cluster size and distribuhon width at a non-zero temperature 
might fulfill this condition. Figure 9 shows the real and imaginary parts of permittivity for 
log Gaussian distributions of A, in which ,i = Ao(T - T{)- 'n ,  where = 400 K and Ao is 
such that  TO) = 3 nm; fo is 10'O Hz. The form of the temperature dependence, reflecting 
the behaviour of the ferroelectric correlation length in Landau theory, was chosen as an 
illustration only and not as a physical hypothesis. 

The peak in the real part of permittivity in figure 9 obeys the Vogel-Fulcher law, with 
the freezing temperature, Tf = 484.3 K, fv = 2.2 x I O i 5  Hz and E , / k  = 856.7 K. The 
value of f v  is somewhat higher than that seen experimentally, however Tf and E ,  are not 
dissimilar from what might be expected from an empirical familiarity of the Vogel-Fulcher 
behaviour of relaxors. 

3.4. Dipolar interactions 

The phenomenon of cluster coarsening might be considered as a departure from one of the 
basic assumptions of the ideal case, that is, the coupling between the clusters is negligible. 
Cluster growth can be interpreted as being equivalent to non-negligible interactions between 
clusters, which increase with decreasing temperature. It is therefore of some importance to 
examine even the most simple departure from the uncoupled case. The most elementary 
type of interaction might be considered is dipolar, as previously discussed by Viehland [16], 
and is developed here, in the form of a mean field, for the case of an ensemble of clusters 
of a single, temperature-independent size. It is assumed that the field experienced by a 
dipolar region due to the neighbouring dipoles is spatially uniform and proportional to the 
total polarization. In this way the expression for the static polarization due to applied fields 
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Figure 9. (a) Real and (6 )  imaginary parts of permittivity as a function of temperature for a log 
Gaussian disvibution of cluster sizes wiul (Alogi)* = 0.2 and A(T) = lo(T -  TI)-''^ where 
x[To) = 3 nm. f i  = 400 K and fo = 10’’ HE. 

(equation (3)) may be modified by additional energy terms within the exponentials. of the 
form yPSPtA3.  For cos(0r) = 1/3, this gives: 

For the case where E = 0, this gives the static polarization at zero field. Figure 10 shows 
the calculated value of P,( E = 0) in comparison with P,, the local polarization, for 1 = 
3 nm and y = 0.5 x 10‘ to 4.0 x lo6 m F’. The corresponding behaviour of static 
permittivity, E. calculated for a small applied field (E = IO00 V m-’) is shown in figure 11. 
With increasing y ,  the temperature of the transition to a correlated polar state occurs at 
higher temperatures. When the temperature of the transition is in the region where the 
relaxation time is within observable limits one would expect to see a spontaneous transition 
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from a superparaelectric to a ferroelectric state, whereas for lower temperatures, when the 
relaxation time is much longer than observable experiments, the transition to the correlated 
state would only be observed &er the application of some exlemal stress, such as an electric 
field. 

II 
I I  

I I  

Y 
0.5 10' 

2.0 1 os - I I  - 
I '  + 
I I  ;: 

w e  I I  :: 
I 1  ;: ...- 1.0 I O 6 -  

- - 1.0 108 

2.0 to' 

4.0 10' .... .. 
- 

0.0 100 , I - 

0.8 , I . , , I  , , . , .  I . , .  

h 
N 

2.0 1 o6 
- 

4.0 I O 6  . 
. . . . . .. E 0.4- 

P- 

0 

0.2 - 
1 :  
1 :  
1 :  

0 , *  I ' ' . ' : ' I .  1 .  p .  1 ,  

0 200 400 600 800 
Temperature (K) 

Figure 10. Static polarization as a function of temperam for mean-field dipolar interactions 
with y = 0.5 x IO6 Io 4.0 x IO6 m F-'. The local polarization, P,, is shown for comparison. 

The application of these static properties to the calculation of the frequency-dependent 
dielectric function is questionable. At finite times the mean-field approximation is expected 
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to breaLdown; the field experienced by the dipoles may be expected to be neither spatially 
uniform nor to have the same value as at infinite time. For these reasons full calculations 
of the frequency-dependent permittivity have not been attempted. 

4. discussion 

The calculations reported here have been derived almost from first principles according 
to specific interpretations of the simple superparaelectric model. The uncertainties of the 
averaging of the cluster permittivities dictates that the results of calculations can be taken 
only as a guide to the behaviour resulting from the initial assumptions. Consequently, 
no explicit attempt has  been made, other than qualitative comparison, to fit the results to 
experimental data from relaxors. It is clear, however, that in choosing the various conditions 
for the simulations, some guidance has been taken from the literature. 

Given that quantitative comparison with experimental data has yet to be carried out, 
the assumption that the clusters may be treated as individual classical ferroelectrics is 
shown to be a useful working hypothesis. Even without invoking a distribution of Curie 
temperatures, the finite-size constraints predict local polarization fluctuations above TO and, 
consequently, a departure from CurieWeiss behaviour up to approximately TO t 200 K, as 
seen experimentally in PMN. In general, the size of the clusters for which the model predicts 
relaxor-like properties is similar to those inferred from E M  [8,9], and x-ray and neutron 
diffraction [ 10,231. 

From the results of the case of independent mono-sized clusters, it becomes clear that 
it is possible to have a peak in the real part of permittivity as a function of temperature 
which is unrelated to any structural change and displays frequency dependence similar to that 
observed in relaxors. However, the imaginary part is in general agreement with relaxors only 
when a distribution of the size of polar regions is introduced. These first two cases, where 
the regions are independent and the size is temperature independent, correspond to a dipolar 
glass but without ferroelectric order. Although this is certainly a possible interpretation of 
relaxor behaviour, the width of the permittivity peaks in the temperature domain suggest 
that this description is inappropriate for PMN, but is worthy of further consideration for 
materials such as PBZT. 

The case in which the size of the regions diverge at a non-zero temperature and 
that in which the clusters would exhibit dipolar interactions might be considered as two 
aspects of the same situation. Both result in a divergence of the static permittivity at 
non-zero temperature, suggestive of the more narrow relaxation peaks of PMN and PST. For 
temperature-dependent cluster sizes, no assumptions are made concerning the mechanism of 
cluster coarsening, therefore the onset of longer-range ferroelectric ordering is not explicit 
in the calculation, however there is an implication that at some finite temperature long-range 
order would result. If the coarsening mechanism were a thermally activated process, the 
process may effectively be brought to a halt before long-range order sets in, commensurate 
with the slowing down of the superparaelectric moments. This picture is consistent with the 
measurements of the temperature dependence of relaxation time [I81 and polar fluctuation 
correlation length [27]. On the other hand, the kinetics may favour the transition to a 
macro-domain state at temperatures above the divergence of the dipole relaxation time. 
This situation would correspond to that of PST and PSN. with a spontaneous transition from 
relaxor to ferroelectric. 

The same arguments may be used in the example of dipolar coupling. In this case 
the mechanism of long-range ordering is more explicit, therefore it is possible to define a 
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temperature below which a macroscopic ferroelectric state is stable. Depending upon the 
strength of the coupling this transition may occur at temperatures when the dipole relaxation 
frequency is in the observable range (cf. PST and PSN) or when the frequency is well below 
our normal experimental range. The latter corresponds to the c k e  of the ferroelectric dipolar 
glass cited by Yushin [ 141 for PMN. 

More insight into the relationskp between cluster growth and dipolar coupling might 
be obtained from Monte-Carlo-type simulations in which the two phenomena would be 
independent of the form of cluster interactions chosen. However, given some of the 
qualitative successes of the present nahe approach, it would be instructive to attempt fitting 
some elements of the model to expenmental data As already shown by Viehland [2] a 
Curie constant and TO can be extracted from high-temperature dielectric data. In addition, 
analysis of polarization field data according to equation (3) can yield values for P,(T) and 
h(T). This would, on the one hand, determine how close to reality is the assumption of 
ferroelectric-like clusters, and on the other, confirm the form of the temperature dependence 
of cluster size and its role in deteimining Tf. 

5. Conclusions 

A method of calculating the dielectric behaviour resulting from the superparaelectric model 
of relaxors has been proposed. For a fictitious superparaelectric based on Pb(Zr0.7Ti0.3)03, 
it is shown that departures from normal ferroelectric behaviour becomes significant when 
the size of coherently polarizing regions is less than 15 nm. The predictions of a depression 
of the permittivity around TO and of high-temperature polarization fluctuations are consistent 
with experimental observations. The results from a limited number of scenarios suggests 
that a model involving a distribution of sizes and some coupling df the superparaelectric 
regions, expressed here as either dipolar interactions or rapid coarsening with decreasing 
temperature, provides the best qualitative fit to relaxor behaviour. This picture is consistent 
with the interpretation of a relaxor as a dipolar glass with ferroelectric ordering. 
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